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LEmER TO THE EDITOR 

A configurational phase transition induced by topological 
entanglements between long chain molecules 

M G Brereton and S Shah: 
Department of Physics, University of Leeds, Leeds LS2 9JT, UK 

Received 3 December 1980 

Abstract. A critical linking number, m,, is defined, and an expression is obtained for the 
mean square size, R 2 ,  of an entangled polymer loop. For linking numbers m,, the existence 
of a configurational phase transition is demonstrated by the occurrence of a collapsed state 
in the polymer molecule. 

The properties of topologically entangled polymer molecules have attracted much 
interest in recent years. The initial mathematical formulation of the problem is due to 
Edwards (1967, 1968). More recently, in a previous paper (Brereton and Shah 1980; 
hereafter referred to as I), the statistical mechanics of two long chain polymer molecules 
subject to a topological constraint in the form of a linking number was formulated (see I 
for further references). The criterion for deciding whether the molecules, described by 
space curves re (s) and r, ( t ) ,  were linked or not was provided by the Gauss integral 

ds d t ia (s )  i . p ( t ) X V [ l / ( r , - r , ) ]  (1) 
1 

L , [ c a ,  col = - 
4.rr fca iB 

where i ( s )  = dr(s)/ds. 
lap takes integer values depending on the linking of the two curves. In I, one of the 

loops, say c,, was allowed to fill a macroscopic volume at a finite density and an average 
was then performed over all the configurations of this ‘background’ molecule subject to 
the constraint that Imp = m, where m is some definite linking number. Then the 
constraint (lap = m ) ,  averaged over the background chain, can be expressed as 

where 

W[c,] = f ds ds’ i ( s )  * T[r(s)  - r ( s ’ ) ]  * i ( s ’ ) .  
C ,  

The tensor T ( R )  is given by 

P12 T (R)  = - ( I + 3 , 12R 

(3) 

(4) 

p is the number density of background monomers and 1 the step length of the chain. 

t Now at: The British Gas Corporation, London Research Station, Michael Road, London SW6 2AD. 
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Thus the effect on the configuration c, of a topological entanglement with the chain c0, 
resulting in a definite linking number m, is expressed by assigning the weighting factor 
(2) to each configuration c,. 

This weighting factor has a maximum for those configurations { c z }  for which 
W{c$}  = m2. It is interesting to note that if only the unit tensor part of T, equation (4), 
is used then 

i(s) * +(sf) 
Ir-r'l ' 

W=-- ' 1 2  J ds ds '  
12T 

the integral part of which is essentially the inductance of a loop. For solenoidal 
configurations, the inductance depends on the (number of turns)2. The weighting factor 
(2) can clearly be optimised by solenoidal configurations adapting the number of turns 
equal to the linking number. However, for polymer configurations this weight factor 
due to the topological constraint must be offset against the natural tendenty of the 
molecule to adopt essentially a random walk configuration. The weighting factor ( 2 )  
can be parameterised as 

The random walk aspect of the configuration is described by using a Gaussian 
distribution of step lengths, or in a continuum notation, the Wiener measure 

D{r}  exp( - i IoL i 2 ( s )  ds) . (7) 

Thus in the presence of entanglements the complete statistical weight factor to be used 
in performing averages over the c, configurations is 

J 2 e+igm J D{r}  exp( - $ J ds i2 - ig2 ds ds' r * T ( r  - r') * i. . (8) ) 
In I this problem was transformed into a gauge field theoretic formalism. However, 

in this Letter we wish to report on an alternative approach obtained by replacing the 
tensor T ( r  - r') by its pre-averaged value, i.e. 

(9) 

This approximation is familiar in the dynamics of polymer molecules in solution, where 
a tensor similar to T naturally arises from hydrodynamic interactions and is known as 
the Oseen tensor (see e.g. Yamakawa (1971)). Ideally the average occurring in (9) 
should be self-consistently calculated. That calculation will be presented in detail 
elsewhere. The main features of our result can be arrived at by using the unperturbed 
chain configurations. The result is 

T [ r ( s )  - r ( s ' ) ] +  (T(r  - r' ) )  = T ( s  - d)l. 

where L =NI. 
The weight factor can now be written as 

1 D{i}  exp( --$I ds ds ' r ( s )  i (s ' )h(s  -s ' )  
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where 

h ( s  -s’) = S(s - s’) +fg’ lT(s  - s’). (12) 

The functional integral in (11) looks like the distribution function for a Gaussian 
random walk governed by a correlated step length: ( r ( s )  * L(s’)) = / h ( s  -s’)l-’. The 
extent of the correlation contained in h ( s  - 3 ’ )  depends on g, which is the variable 
conjugate to the linking number m. The functional integral (11) can be performed 
exactly. 

The probability p (m)  of finding the two loops c, and cg entangled with a linking 
number m is given by 

p (m)  = ( S ( L p { c , ,  C P ) - ~ ) ) [ ~ , , ~ ~ I .  (13) 

Using (1 1) this has been evaluated as 

p (m)  = (1/2vfi2)”‘ exp(-m2/2fi’) 

where the average (linking number)’, e*, is given by 

fi2-p13(1/d)‘/2N. 

d is a cut-off necessitated by the breakdown of the Gaussian random-walk model on 
scales of the order of monomer units d - 1. The mean square size R2(s, m)  of the c, loop 
linked m times is measured by 

R 2 b ,  m)  = @(Ia@ -m)(ra(s)--a(0))2)[C,~[Cg~ (16) 
which can be evaluated using (1 1). The result can be written as 

where so is the measure of arc length appropriate for a loop, i.e. so = s(1 - s /L)  and 
Rg(s)  is the unperturbed Gaussian result for a loop of length L: 

R i  = sol. 

The function f has the following limiting properties: 

f(0) = 1, f(x 1 - 1 lx, x > l ,  (18) 

mz (so) = p13(1/d)N3/2(L/so)’/2 (19) 

and the critical linking number m, is given by 

and depends on the arc length so over which the size of the molecule is being measured. 
For m << m,, equation (17) together with (18) simplifies to 

R2(s, m)-Rg(s) ( l  +m2/m?(so)) .  (20) 
If we average R’(s, m)  over m using (14), then 

R’(S)=(R’(S, m), = R i ( s ) ( l  +e2 /mz(sO) ) .  

We have, using (15) and (19), that f i2/m: - N-1 /2  and consequently the correction to 
the Gaussian result is negligible. At m = m,(so) the chain is expanded as R 2 / R i  - 
and for m > m,(s), the chain collapses with increasing linking number as 

R2/R:  -m,(s)/m. (21) 
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These results show that for m < mc(so) the entropy of the chain still dominates over 
the linking number constraint, and an approximate random walk configuration results. 
For m > mc(so) the constraint dominates and some kind of partially collapsed solenoidal 
state occurs. The linking number is a global constraint which affects the largest-scale 
features of the molecule first. Thus for m < mc(L) no part of the molecule will be 
dominated by the linking number constraint. However, when m > m,(L) there will still 
be shorter arc lengths 0 < so< so* for which m < m,(so*), and consequently over these 
arc length scales the molecule will still be approximately Gaussian. However, for arc 
lengths so > so* the constraint dominates and some collapsed state prevails at these 
scales. From (19) the criterion m < m ( s ; )  can be rewritten as 

s t  < Lm: ( ~ / 2 ) / m ~ .  (22) 
We can picture the highly entangled state of the molecule as still being composed of 
Gaussian subunits on some arc length scale 0 <so < s t ,  but overall these units are 
connected in a partially collapsed non-Gaussian manner. 

It is interesting to note that Elderfield (1980) has examined this problem in the 
gauge field theoretic formalism to see if the critical exponents of the unconstrained 
polymer system are changed by entanglements. He  uses the d =4-& expansion 
technique familiar in critical phenomena problems and finds that for m less than a 
critical value the entanglements do not alter the universality class. His expression for 
the critical linking number in three dimensions is essentially the same as ours, i.e. 
m: -N3I2 ,  

A more detailed picture of the entangled state, including a self-consistent cal- 
culation, will be presented in a full paper. We will also give the mechanical properties of 
the model and possible applications to molecules such as the DNA. 

S Shah acknowledges financial support from the SRC. 
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